
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Enemy AI Movement Model in Lethal Company as a

Hamiltonian Path Heuristic with Precision Radius

Analysis
A Comparative Study of Classical and Modified Nearest Neighbor Heuristics

Richard Samuel Simanullang - 13524112

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: samsr472@gmail,com@gmail.com , 13524112@std.stei.itb.ac.id

Abstract— Enemy AI is a basic feature in modern games where

the enemy behaves as if they have their own consciousness. Enemy

AI varies . Lethal Company is a co-op horror game about

scavenging at abandoned moons to sell scrap to the Company.

Lethal Company is well-known for the enemy's AI, which uses

good logical operations and varies among different species of

monsters. This paper analyzes the pathfinding mechanism of the

enemy AI in the video game Lethal Company. The AI's patrolling

behavior, which requires it to visit a series of strategic points, is

modeled as an attempt to solve the Traveling Salesperson Problem

(TSP) through a Hamiltonian path heuristic approach. The goal of

this study is to identify the algorithm used, visualize its behavior,

and analyze its effectiveness compared to standard approaches.

Keywords—component; Graph, Hamiltonian Circuits,

Hamiltonian Paths, Traveling Salesperson Problem, Nearest

Neighbor Heuristics, Lethal Company, Enemy AI

I. INTRODUCTION

The recent development of the gaming industry has brought
about challenges in the design of unique and interesting games.
This development cannot be separated from the mechanics and
workings of the game behind the scenes. Lethal company is one
of the games that has developed and is famous for the way it
works behind the scenes.

Lethal Company is a co-op horror game about scavenging at
abandoned moons to sell scrap to the Company. Lethal
Company is well-known for the enemy's AI, which uses good
logical operations and varies among different species of
monsters. Even though Lethal Company is just a game, the
enemy AI's logic regarding its search mechanism could help
humans solve many everyday problems.

This paper examines how principles from discrete
mathematics, particularly graphs, are used in the formation of
enemy AI in Lethal Company. This paper specifically focuses
on how the enemy AI performs search and exploration in Lethal
Company.

As Fig 1.1 shows, nodes are placed around the map to form
the basis of the enemy AI mechanism. Fig 1.2 shows the enemy
executing the AI mechanism constructed from the developer's

source code. This is what makes the lethal company game
interesting to explore more deeply.

Fig 1.1 Nodes in Lethal Company
Source:

Lethal Company

Fig 1.2 Enemy’s AI working in realtime
Source:

Lethal Company

mailto:author@gmail.com
mailto:13524112@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

II. THEORETICAL BASIS

A. Graph

Graph defined as a collection of nodes connected by lines or
edges. In this case,

𝐺 = (𝑉, 𝐸)

Where G represents the graph, V represents the Vertices, and E
as its Edges.

Graph is commonly used to represent discrete objects and
relationships between them. In Fig 2.1, A, B, C, and D
considered as the vertices/nodes and the lines connecting them
considered as edges.

Fig 2.1 Graph with its nodes and edges
Source :

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-
2025/20-Graf-Bagian1-2024.pdf

Based on the presence of loops or multi-edges in the graph,
graphs are classified into two types. First one is simple graph.
Simple graph is a graph that connect its nodes with single edges.

Fig2.2 Simple Graph
Source :

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-
2025/20-Graf-Bagian1-2024.pdf

The second one is unsimple graph. Unsimple graph is a
graph that has multi-edges and loops.

Fig 2.3 Unsimple Graph
Source :

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-
2025/20-Graf-Bagian1-2024.pdf

B. Graph Terminology

There are some terminologies in graph, such as :

1. Adjacent

Two vertices are said to be adjacent if they are directly
connected.

2. Incidency

For arbitrary edge 𝑒 = (𝒗𝒋, 𝒗𝒌) say e is adjacent to

𝒗𝒋, or e is adjacent to 𝒗𝒌.

3. Isolated Vertex

Isolated Vertex is a vertex that has no edge that is
adjacent to it.

4. Null Graph

Graph whose edge set is the empty set.

5. Degree

Degree of a vertex is the number of edges that are
adjacent to that vertex. Notation : d(v).

6. Path

A path is a sequence of vertices where each consecutive
pair of vertices is connected by an edge. In a simple
graph, path formed when no vertex is repeated,
ensuring each vertex is visited at most once.

7. Cycle/Circuit

Cycle/Circuit is a path that starts and ends at the same
vertex.

8. Subgraph

Suppose 𝐺 = (𝑉, 𝐸) is a graph. 𝐺1 = (𝑉1, 𝐸1) is a
subgraph of G if 𝑉1 ⊆ 𝑉 dan 𝐸1 ⊆ 𝐸.

C. Hamiltonian path and Hamiltonian circuit

Hamiltonian path is a path that goes through each vertex in

the graph exactly once, but does not end at the same vertex as

the starting vertex. Hamiltonian circuit is a circuit that goes

through each vertex in graph exactly once, except the origin

vertex. Graphs that have Hamiltonian circuits are called

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Hamiltonian graphs, while graphs that only have Hamiltonian

paths are called semi-Hamiltonian graphs.

Fig 2.4 Hamiltonian graph
Source :

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-
2025/22-Graf-Bagian3-2024.pdf

D. Travelling Salesperson Problem and Nearest Neighbor

Algorithm

The Travelling Salesperson Problem (TSP) is a well-known

optimization challenge in computer science. It asks for the

shortest possible route that visits each city exactly once and

returns to the starting point. It means that TSP is significantly

linked to the Hamiltonian Circuit. TSP is an NP-hard problem,

meaning there is no known efficient solution for large datasets,

but various algorithms can provide exact or approximate

solutions.

Fig 2.5 Travelling Salesman Problem

Source :

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/202

4-2025/22-Graf-Bagian3-2024.pdf

 One of the approaches in TSP Algorithm is Nearest
Neighbor Algorithm. Nearest Neighbor(NN) Algorithm starts at
a random city and repeatedly visits the nearest unvisited city.
The primary advantage of the NN algorithm is its speed and
simplicity. For a graph with n vertices, the algorithm has a time
complexity of O(n²). Nearest Neighbor Algorithm uses distance
metrics to identify nearest neighbor, these neighbor are used for
classification and regression task[4]. To identify nearest
neighbor we use below distance metrics :

1. Euclidean Distance

 Euclidean distance is defined as the straight line
distance between two points in a plane or space.

𝑑(𝑥, 𝑋𝑖) = √ ∑ (𝑥𝑗 − 𝑋𝑖𝑗
)

2
𝑑

𝑗 = 1

2. Manhattan Distance

 This is the total distance the salesman would travel if
the salesman could only move along horizontal and vertical
lines like a grid or city streets

𝑑(𝑥, 𝑦) = ∑|𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖 = 1

3. Minkowski Distance

 Minkowski distance is like a family of distances, which
includes both Euclidean and Manhattan distances as special
cases.

𝑑(𝑥, 𝑦) = (∑(𝑥𝑖 − 𝑦𝑖)𝑝

𝑛

𝑖 = 1

)

1
𝑝

The nearest neighbor algorithm (NN) starts its tour from a
fixed vertex 𝑖1, goes to the nearest vertex 𝑖2 (i.e., 𝑐(𝑖1, 𝑖2) =
 𝑚𝑖𝑛 {𝑐(𝑖1, 𝑗) ∶ 𝑗 ≠ 𝑖1}), then to the nearest vertex 𝑖3 (from 𝑖2)
distinct from 𝑖1 and 𝑖2, etc.

III. ANALYSIS

 Lethal company enemy’s AI uses a different algorithm than
any TSP problem solving method. They use a heuristic Nearest
Neigbor algorithm in the enemy roaming/searching mechanism.
The following algorithm that will be explained later does not
represent solving the TSP problem directly, but rather gives
‘character’ to the enemy.

 The author has decompiled the Lethal Company game to get
the original source code. The following is a section-by-section
explanation of the enemyAI C# code that constructs the enemy
roam/search logic :

A. Search Initialization

As soon as enemy spawned in, enemy’s AI starts its
roaming/searching mechanism by checking all nodes that
already placed across the entire map.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/22-Graf-Bagian3-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/22-Graf-Bagian3-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/22-Graf-Bagian3-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/22-Graf-Bagian3-2024.pdf

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig 3.1 AINode search
Source :

Lethal Company Developers

All detected nodes are put into a list that will be used later.
The AI starts every search coroutine by finding every
unsearched node that is available in the AINode list. This step
effectively defines the problem “visit all nodes in all AINodes”.

This code logic is an application of the Hamiltonian path
behaviour. Because the game program code is made according
to the developer's wishes, we can manipulate the program code
so that when the enemy is on the last unvisited node, the next
node is the first node accessed. That way we can assume that we
can use Traveling Salesman Problem (TSP) to model the
weighting problem in this pathfinding AI.

Fig 3.2 add AINode to list
Source :

Lethal Company Developers

B. Next node selection (Nearest Neighbor Heuristics)

 In CurrentSearchCoroutine(), AI calls ChooseNextNodeIn
SearchRoutine() to decide where to go next. This coroutine uses
the Nearest Neighbor heuristic algorithm to select the next node
from the list of unvisited nodes. The algorithm process can be
broken down into this following steps:

1. Settle a reference point

Unlike the usual Nearest Neighbor algorithm which
uses the object’s current location as a reference point,
this algorithm uses the previous location as its
reference point and stores it in the
currentSearchStartPosition() variable.

2. Distance calculations

The algorithm iterates through the unvisited (available)
node in the unsearched node list. For each node, it
calculates the pathDistance between the node and the
previous node that stored in currentSearchStart
Position() using Euclidean distance. Let 𝑑𝑛 denote the
distance between node 𝑛 ∈ 𝑆 and the previously visited
node 𝑝𝑝𝑟𝑒𝑣, this calculation can be expressed as:

∀𝑛 ∈ 𝑆, 𝑑𝑛 = 𝑑𝑖𝑠𝑡(𝑛, 𝑝𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)

𝑛next = arg min
𝑛∈𝑆

𝑑𝑛

where S is the set of unvisited nodes, and 𝑝𝑝𝑟𝑒𝑣 is the

reference node from the previous process.

Fig 3.3 Distance calculation with Euclidean distance
Source:

Lethal Company Developers

3. Comparison and selection for the next node

The algorithm stores the shortest distance in closestDist
[2] variable, and the node associated with that distance
in chosenNode variable. The chosenNode will be the
next destination for the AI, while the currentNode will
be the currentSearchStartPosition as the coroutine
starts again.

Fig 3.4 Choosing the next node
Source:

Lethal Company Developers

C. Precision Radius Implementation

Lethal company uses precision radius on players and nodes
to do the node check mechanism. Precision radius, or
searchPrecision(in Lethal Company terms), used in two ways:

1. Mark visited Node

In CurrentSearchCoroutine, the AI is considered to have
reached the next node if the distance is smaller than the
searchPrecision.

2. Eliminate nearby nodes (Radius based pruning)

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

After the enemy sets the current next node as visited, it
also sets all nodes within the searchPrecision radius as
visited.

Fig 3.5 Eliminating nearby nodes within searchPrecision radius
Source:

Lethal Company Developers

IV. IMPLEMENTATION AND RESULT

To simulate the enemy search and roam algorithm in the
lethal company, Python programming language is used to
visualize how the lethal company heuristic algorithm traces the
hamiltonian path.

In addition, the number of weights on a semi-Hamiltonian
graph is compared when using the original (classical) nearest
neighbor algorithm with the lethal company nearest neighbor
heuristic algorithm.

A. Initialization

The simulation began by importing important libraries,

parameters, and node position generation. The starting node is

set as node 0, to know where the graph pathing starts.

Fig 4.1 Visualization and Comparison Initialization

Source:

Author’s source code

B. Simulation

The simulation function has two parameters, first the type

of search algorithm used, and second is the title of the image.

The function begins by initializing several variables to track the

simulation state, such as:

• physically_visited = []: An ordered list to store the

sequence of nodes the object physically travels to

• radius_visited = set () : A set to store nodes that

considered as visited because they fall within the

search radius of the physically_visited node.

• edge_trail = []: A list of tuples, where each tuple

represents a directional edge (start_node, end_node).

• total_weight = 0 : A float data type to store the total

distance of the path traveled by the object.

• curr_node = START_NODE: an integer that

represents the current node where object is, initialized

to the starting node.

The main simulation loop in Fig 4.2 continues as long as

the total number of visited nodes (including radius visited

nodes) is less than the total number of nodes available. This

loop ensures the process imitates the Hamiltonian path.

Inside the loop, the first step is to check the current node.

If the current node is valid, then add the node into the

physically_visited list. Before going into the next node, the

program traverse into every nodes that’s not already physically

visited and radius visited. Any node that is within the

searchPrecision range of the current node, added into the

radius_visited list.

Fig 4.2 Initializing simulation code

Source :

Author’s source code

Next is to determine which node will be the next node. This

is the part where the 2 algorithms are applied.

1. Identify unvisited nodes

As seen in Fig 4.3, a list of unvisited nodes is created

by finding all nodes that aren’t already in visited lists

(physically and radius based).

2. Compare the algorithm

The type of algorithm parameter determines the logic

for selecting the next node.

• Classic Nearest Neighbor Algorithm

The reference point (ref_node) is the current node.

The object simply chooses the closest unvisited

node to the current node.

• Lethal Company NN heuristic

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

The reference point (ref_node) for the distance

calculation is set to the second-to-last physically

visited node (physically_visited[-2]). This means

the object decides its next move based on where it

was before its current location. This can create

less direct, more unpredictable paths.

Fig 4.3 Next node selection based on the algorithm

Source :

Author’s source code

C. Visualization

The program visualizes the paths on the graph one by one

based on its algorithm. Nodes that belong to the physically

visited section are marked in blue. The radius visited ones are

marked in green. The unvisited ones is marked in gray for

debugging purposes (as we already know that Hamiltonian path

doesn’t allow any unvisited nodes).

Fig 4.4 Visualization

Source:

Author’s source code

D. Final code and Result

The final part of the code runs the program with a total of 2

runs, namely the program with the classic NN algorithm, and

with the Lethal Company Nearest Neighbor Heuristic

algorithm.

Fig 4.5 Final code

Source:

Author’s source code

The results presented in Figure 4.6 visualize the

Hamiltonian path of the graph using the classic Nearest

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Neighbor algorithm. The distance (total weight) traveled using

this algorithm is 3.5873 units.

Fig 4.6 Classic NN Hamiltonian Path

Source:

Author’s archive

The results presented in Figure 4.7 visualize the

Hamiltonian path of the graph using the Lethal Company

Nearest Neighbor Heuristic algorithm. The distance (total

weight) traveled using this algorithm is 5.8456 units.

Fig 4.7 Lethal Company Nearest Neighbor Heuristic

Hamiltonian path.

Source:

Author’s archive

From the previous two results, it is found that the classic

Nearest Neighbor algorithm is more effective than the Lethal

Company Heuristic algorithm in terms of total load (distance).

V. CONCLUSION

This study analyze and demonstrates the implementations of

Hamiltonian paths in Lethal Company Enemy’s AI searching
mechanism. By analyzing the original source code, we know
that Lethal Company Enemy’s AI searching mechanism uses
Nearest Neighbor heuristic. However, its implementation has
unique and non-standard heuristic properties. Instead of
applying the classic greedy approach of choosing the closest
node to the current position, the game's algorithm makes
decisions based on the distance from previously visited nodes.

The “one-step-back” nature of this heuristic results in
fundamentally different behavior. This causes the AI to often
take unexpected and locally non-optimal paths, as its decisions
are not always relevant to its current surroundings. This behavior
also emphasizes the “patrolling” principle present in horror
games in general.

When the effectiveness of this algorithm is evaluated using
the Traveling Salesperson Problem (TSP) as a model problem-
where the goal is to find the shortest route to visit all points - the
search algorithm used by Lethal Company proves to be
ineffective. Previous simulations consistently show that the total
weight (distance) of the paths generated by this heuristic is
significantly higher than those generated by the classic Nearest
Neighbor algorithm. From a pure optimization perspective, this
algorithm is a poor TSP solver.

Nonetheless, this “poor efectiveness” seems to be a
purposeful design choice. In game design, the main goal is not
the efficiency, but rather to create a unique and engaging gaming
experience. With unpredictable patrol paths, players of this
game cannot easily guess the enemy’s AI movements. Thus,
Lethal Company sacrifices path optimization in favor of creating
enemies that feel more organic, dynamic, and ultimately, more
threatening.

VI. APPENDIX

The following is the source for the code that have been
analyzed and for implementing a comparison between the
classic Nearest Neighbor Algorithm and Lethal Company
Heuristics Nearest Neighbor Algorithm :

https://github.com/Lloyd565/Discrete-Mathematics-Paper--
-Enemy-AI-Movement-in-Lethal-Company-as-a-Hamiltonian-
Path-Heuristic-

VII. ACKNOWLEDGMENT

I would like to express my gratitude to to God Almighty for
His guidance which have enabled me to complete this paper for
IF1220 Matematika Diskrit. I personally would also like to thank
Arrival Dwi Sentosa, S.Kom., M.T., the lecturer for the IF1220
Discrete Mathematics course, for teaching the course material
clearly and thoroughly, making it easier for me to complete this
paper.

REFERENCES

[1] [1] R. Munir, “Graf (bagian 1),” materi kuliah, Sekolah Teknik Elektro
dan Informatika, Institut Teknologi Bandung, 2024. [Daring]. Tersedia:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-
Graf-Bagian1-2024.pdf.

[2] [2] R. Munir, “Graf (bagian 3),” materi kuliah, Sekolah Teknik Elektro
dan Informatika, Institut Teknologi Bandung, 2024. [Daring]. Tersedia:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/22-
Graf-Bagian3-2024.pdf.

[3] [3] WSCube Tech, “Travelling salesman problem in DSA,” WSCube
Tech Resources. [Daring]. Tersedia:
https://www.wscubetech.com/resources/dsa/travelling-salesman-
problem. [Diakses: 20 Juni 2025].

https://github.com/Lloyd565/Discrete-Mathematics-Paper---Enemy-AI-Movement-in-Lethal-Company-as-a-Hamiltonian-Path-Heuristic-
https://github.com/Lloyd565/Discrete-Mathematics-Paper---Enemy-AI-Movement-in-Lethal-Company-as-a-Hamiltonian-Path-Heuristic-
https://github.com/Lloyd565/Discrete-Mathematics-Paper---Enemy-AI-Movement-in-Lethal-Company-as-a-Hamiltonian-Path-Heuristic-
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/22-Graf-Bagian3-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/22-Graf-Bagian3-2024.pdf
https://www.wscubetech.com/resources/dsa/travelling-salesman-problem
https://www.wscubetech.com/resources/dsa/travelling-salesman-problem

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

[4] [4] GeeksforGeeks, “K-nearest neighbours,” GeeksforGeeks, 23 Mei
2024. [Daring]. Tersedia: https://www.geeksforgeeks.org/machine-
learning/k-nearest-neighbours/.

[5] [5] G. Gutin, A. Rafiey, S. Szeider, and A. Yeo, “The traveling salesman
problem,” dalam Handbook of Graph Theory, Combinatorial
Optimization, and Algorithms, K. Thulasiraman, S. Arumugam, A.
Brandstädt, dan T. Nishizeki, Eds. Boca Raton, FL: Chapman &
Hall/CRC, 2015, ch. 48.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 20 Juni 2025

Richard Samuel Simanullang 13524112

https://www.geeksforgeeks.org/machine-learning/k-nearest-neighbours/
https://www.geeksforgeeks.org/machine-learning/k-nearest-neighbours/

